
LA-UR-13-20948
Approved for public release; distribution is unlimited.

Title: PARTISN on Advanced/Heterogeneous Processing Systems

Author(s): Baker, Randal S.

Intended for: Public dissemination.

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Abstract

• This presentation describes both the importance and the difficulty of
parallelizing deterministic neutron transport calculations using the LANL code
PARTISN. A brief history of the standard "KBA" parallelization method used
for deterministic SN transport is presented, then the modifications necessary
to implement this on Roadrunner are covered. The use of the Roadrunner
algorithm with OpenMP is then described, along with a brief mention of an
alternative thermal radiation transport algorithm for GPUs. Finally, ongoing
work with PARTISN on the MIC many-core architecture is noted.

PARTISN on Advanced/Heterogeneous
Processing Systems

Randy Baker

Computational Physics Group (CCS-2)

Los Alamos National Laboratory

LA-UR-13-xxxxx

Deterministic, time-dependent neutron transport forms a large part
of the overall ASC workload

• Neutron transport is inherently
seven-dimensional (three in space,
two in angle, one in energy, and
one in time)

• Deterministic neutron transport has
always stressed every aspect of
computational performance since
the 1950’s

• PARTISN, 1D/2D/3D static or
time-dependent transport
package, origins late 50’s

• Large number of floating point
operations (vectorization/cache
size)

• ~1 FLOP/load (memory bandwidth)

• Frequent small messages (MPI
latency)

• But not that small… (MPI
bandwidth)

• Large array/data sizes (memory
storage)

• Large restart files (disk
performance)

It’s better to be a dog in a peaceful time than be a man in a chaotic
period……

• Early 1990’s, transition from
“traditional” Parallel Vector
Processors (e.g., Cray Y-MP) to
today’s MPI clusters

• Data parallel vs. message passing

• CM-Fortran vs. HDF vs. MPICH vs.
MPI vs. …..

• Similar uncertainty about viability
of “traditional” algorithms on new
platforms

• Transport sweeps parallelized
through use of “KBA”

• Days of “MPI everywhere” clusters
leading HPC are already ending at
national labs

• “Bleeding edge” platforms are
heterogeneous, i.e., traditional
RISC processor plus………..
Cell/GPU/FPGA/many-core

• MPI still used, but in combination
with threads/DaCS/???

• F95/C++ and CUDA/OpenCL/???

Are “KBA” transport sweeps still viable?

“KBA” sweeps are well-suited for 3-D geometries, but inherently
problematic in 2-D geometries

• Wavefront technique requires a 1-D
spatial domain decomposition in 2-D
R-Z geometries

• Idle processors as sweep starts at
one end of the mesh and finishes at
the other

• Standard “KBA” sweep increases
“busy” fraction of processors by
“stacking” angles on top of R-axis
spatial cells

• This technique has proven to provide
effective parallelization out to
hundreds of traditional processors
for 2-D R-Z calculations

PE 0

PE 1

R

Z

Can we scale 2-D KBA sweeps on
heterogeneous (many core) architectures?

The increase in “compute cores” on the Cell architecture
challenges 2-D “KBA” sweeps

• Each Opteron “Host” core is now associated with one PPE on the Cell

• Each PPE has 8 SPEs

• Each SPE is essentially a vector processor with a vector length of two

• Performance gains on the Cell are achieved by using the SPEs in vector
mode

• This effectively increases our “compute core” count by 8X (16X)

• For a fixed problem size, increasing the number or processors degrades the
PCE of “KBA” sweeps

• Previous work at implementing “KBA” sweeps for the Cell judged not
effective for 2-D geometries

More “compute cores” means we also
need more independent data streams

Vectorization over angles/polar levels and “threading” over energy groups
allows us to maintain acceptable 2D/3D parallel performance

• “Stacking” of angles in traditional “KBA” sweeps has now effectively been
replaced with “stacking” of energy groups

• Each thread only works on a single energy group at a time, facilitating
implementation of group-dependent quadratures

• The spatial chunk size used by the MPI rank to communicate to downstream
processors has been reduced

• This increases the communications frequency, but the MPI rank is no longer
compute-bound while performing the sweep, so communications latency is
not an issue (?)

MPI in space
“threaded” over energy
vectorized over angles

2-D transport sweeps can now be efficiently performed on
Roadrunner using the “Cell KBA” algorithm

• 180x360 spatial mesh, S16 square
C-L(64 angles/octant), spatial
“chunk” size of 90 on Opteron, 8
on Cell

• 70 energy groups

• PCE for traditional “KBA” is not a
function of number of energy
groups

• PCE for “Cell KBA” is now a
function of energy groups, but no
longer a function of SN order

P PCE Cell PCE
1 1.000 0.951
2 0.996 0.949
4 0.988 0.944
8 0.973 0.935

16 0.945 0.918
32 0.892 0.885
64 0.803 0.825
128 0.668 0.728
256 0.501 0.589
512 XXXXX XXXXX

“Cell” KBA sweep using 2,048 “compute cores”

The “Cell KBA” sweep is even more effective for 3-D geometries on
Roadrunner

• Weak scaling study (~13,700 cells
per processor)

• Cube of Pu with left/bottom/front
reflecting boundary conditions,
constant dx, keff

• S16 triangular quadrature (36
angles/octant), P2 scattering, 30
energy groups), spatial “chunk”
size of 10 on Opteron, 2 on Cell

• Transport Grind Time is time for
transport operator per phase space
cell

Cell speedup from ~4X to over 8X for 3-D geometries

Even with 3-D geometries, “KBA” sweeps have already shown
need for an “MPI+X” programming model on other platforms

• Models show “MPI everywhere”
should be efficient for 3-D “KBA”
sweeps out to ~100,000 cores

• Large amounts of nuclear data
replicated, already insufficient
memory on one node of Luna for
some 1-D calculations

• Use of MPI+OpenMP (one node,
one MPI rank, 16 threads) allowed
1-D calculations to run

• Large 3-D calculation on Cielo, still
“MPI everywhere”, but needed
spatial AND energy decomposition

Implementation of the Cell algorithm within PARTISN was a team
effort

• No significant differences in performance or code text size between C and
Fortran, used (mostly) Fortran for PPE and SPE functions for maximum
reuse of existing Fortran

• Initial development begun Spring 2009 with separate Cell-only CVS
repository, transferred very quickly into branch of PARTISN CVS repository

• Cell branch merged onto PARTISN trunk January 2011

• PARTISN ~117,000 Source Lines of Code (SLOC)

• Currently ~3,900 SLOC for PPE/SPE-specific functions

• Additional ~2,300 SLOC in “standard” PARTISN to use these Cell functions

Hardware is (almost) “cheap”, software is expensive……

SPE Heterogeneous programming leads one to question their career
choices and increase their alcohol consumption......

• Asynchronous memory puts/gets, controlled by the SPE, used to transfer data from/to main
memory

• Checking for arrival of data on SPE prior to use not sufficient, also had to check that it had
been stored in main memory before request (2X slowdown)

• Buffering scheme used to overlap data transfers and computations

• Number of buffers arbitrary, small-scale testing shows ~10% increase in performance over
one buffer with two buffers, little additional with three, and performance degradations
thereafter

• Default setting is two buffers, use of more not recommended due to memory limitation of
only 256 Kbytes per SPE for OS/Code text/code data!

• Code overlays used to reduce SPE memory usage

STOP!

But maybe not for multi-physics???

Threading (OpenMP) is not yet widely used (supported)
by ASC at LANL

• LANL “how to” documentation almost non-existent, especially on how
to place/bind MPI ranks (and their threads) on NUMA nodes

• PGI compiler not working in MPI+OpenMP mode due to libnuma.a
issues

• Intel compiler only supports binding of threads to cores
(performance!) on Intel hardware, and even there still had to be
disabled for Luna

• Floor version of OpenMPI not yet truly “thread safe”

Transitioning PARTISN from Cells/SPEs to MPI+OpenMP was
straightforward and the code is now in production use

• ~1 week effort, “shadow” Opteron
code converted to use threading
(OpenMP) over energy, MPI over
space and vectorization in angle
retained

• Significant advantages over “MPI
everywhere” for 1-D calculations

• OpenMP ~10-20% faster, reduced
memory usage, for 1-D
calculations

• Still problematic for 2-D/3-D
calculations

2-D scaling study on Luna

“KBA” sweeps combined with threading over energy requires a
truly thread-safe MPI library for performance

• MPI_THREAD_SINGLE - Only
one thread will execute

• MPI_THREAD_FUNNELED - The
process may be multi-threaded,
but only the main thread will make
MPI calls

• MPI_THREAD_SERIALIZED - The
process may be multi-threaded,
and multiple threads may make
MPI calls, but only one at a time

• MPI_THREAD_MULTIPLE -
Multiple threads may call MPI, with
no restrictions

2-D scaling study on CielitoUser locks!
Library locks?

PARTISN (“KBA” sweeps) on GPUs is a problematic proposition

• Insufficient independent data
streams in 2-D, and probably even
in 3-D, to keep GPU busy

• Combination of data and task
parallelism may help, difficult to
program/maintain?

• Abandoning “KBA” sweeps puts
deterministic neutron transport into
uncharted territory, substantial
verification/validation effort

• More “GPU-friendly” algorithms
showing promise for deterministic
thermal radiation transport Capsaicin scaling study on

Moonlight, with and without
GPUs

Implementation of PARTISN on MIC’s (Knights
Corner) is currently underway

• Heterogeneous mode, not native (two months wasted…..)

• Focus is on optimizing single core performance on the
MIC

• Built with OpenMP on host and MIC, single thread testing
only (so far)

• No MPI (only two Knights Corner nodes at LANL)

• Targeted at “production” implementation based on
OpenMP algorithm <- Roadrunner algorithm

Initial performance (after two weeks) on MIC shows much work yet
to done on improving vectorization by both Intel and PARTISN

• MIC, 60+ cores, vector length (64-
bit) of eight

• Host, Sandy Bridge (?), vector
length of two

1. Auto-vectorization flags, compiler
directives, memory alignment

2. Data reorganization within
PARTISN

3. MIC vector intrinsics

Host MIC

Initial 79.2 secs 655.7 secs

-no-vec 1.25X 1.65X

Step 1(b) 71.9 secs 515.7 secs

-no-vec 1.38X 1.90X

Lessons learned (AKA “survival strategies”) in programming for
advanced architectures

• Minimize data movement, whether to/from main memory
or to/from host/accelerator

• Maximize the number of independent data streams within
your algorithms (and/or change your algorithms!)

• Vectorize, and then vectorize some more

be prepared to throw away your code every few years…..

play well with others…..

	Abstract
	PARTISN on Advanced/Heterogeneous Processing Systems
	Deterministic, time-dependent neutron transport forms a large part of the overall ASC workload
	It’s better to be a dog in a peaceful time than be a man in a chaotic period……
	“KBA” sweeps are well-suited for 3-D geometries, but inherently problematic in 2-D geometries�
	The increase in “compute cores” on the Cell architecture challenges 2-D “KBA” sweeps�
	Vectorization over angles/polar levels and “threading” over energy groups allows us to maintain acceptable 2D/3D parallel performance�
	2-D transport sweeps can now be efficiently performed on Roadrunner using the “Cell KBA” algorithm
	The “Cell KBA” sweep is even more effective for 3-D geometries on Roadrunner
	Even with 3-D geometries, “KBA” sweeps have already shown need for an “MPI+X” programming model on other platforms
	Implementation of the Cell algorithm within PARTISN was a team effort�
	SPE Heterogeneous programming leads one to question their career choices and increase their alcohol consumption......�
	Threading (OpenMP) is not yet widely used (supported) by ASC at LANL
	Transitioning PARTISN from Cells/SPEs to MPI+OpenMP was straightforward and the code is now in production use
	“KBA” sweeps combined with threading over energy requires a truly thread-safe MPI library for performance
	PARTISN (“KBA” sweeps) on GPUs is a problematic proposition
	Implementation of PARTISN on MIC’s (Knights Corner) is currently underway
	Initial performance (after two weeks) on MIC shows much work yet to done on improving vectorization by both Intel and PARTISN
	Lessons learned (AKA “survival strategies”) in programming for advanced architectures

